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Collective instability of salt fingers 

By MELVIN E. STERN 
Graduate School of Oceanography, University of Rhode Island 

(Received 22 April 1968 and in revised form 9 August 1968) 

We first consider a steady laminar model of salt fingers and show that the latter 
become unstable with respect to internal gravity waves when the finger Reynolds 
number exceeds a critical value. The criterion is then used in speculations about 
the statistically steady state in a fully developed similarity model where hori- 
zontally averaged temperature and salinity gradients are constant at  all depths. 
Dimensional reasoning is used to obtain the asymptotic dependence of the turbu- 
lent flux on the molecular salt diffusivity. From this and other relationships order- 
of-magnitude estimates are obtained and compared with laboratory experiments 
and ocean observations. 

1. Introduction 
A salt solution which is in diffusive and hydrostatic equilibrium, with salinity 

X*(z), temperature T*(z), and specific volume l/p*(z) increasing linearly in the 
upward (z)  direction, is known to be unstable in the gravity field because the 
molecular diffusivity K~ is two orders of magnitude smaller than the thermal 
diffusivity K~ (Stern 1960). By considering the evolution of one-dimensional 
perturbations varying in the horizontal as sin(z/L) and independent of z, one 
shows that the most unstable disturbance has a dimension of order 

L = [ g a ( a T * p z ) / ~ ~ v ] - ~ ,  

where CL is the coeficient of thermal expansion and v the kinematic viscosity. It 
is easy to show that the linear solution will also satisfy the non-linear equations 
of Boussinesq, and this solution will be referred to as the laminar ‘similarity 
solution ’ . This laminar similarity solution does not modify the horizontally 
averaged temperature and salinity, and the convective salt flux pFs (g/cm2/sec) 
continues to increase exponentially with time. The foregoing ignores the finite 
vertical dimensions which are imposed by the boundary reservoirs. Important 
qualitative modifications will also be produced by another effect. As the ampli- 
tude of the salt fingers increases in time there will be additional instabilities 
leading to a break-up of the fingers and to their complete mixing. One may there- 
fore examine the time dependent similarity solution for the critical value of Fs 
which leads to this transition. 

In  order to avoid the inherent time-dependence of the similarity model it seems 
desirable first to investigate the stability of a closeIy related ‘equilibrium ’ model 
(figure 1 (a)). This model was first proposed by W. V. R. Malkus (private communi- 
cation); it differs from the ‘similarity’ model in so far as the salinity field B(z) is 
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uniform in z and the salt diffusivity K~ is neglected. Under certain conditions the 
mean T(z),  B(z) fields of the equilibrium model, supplemented by boundary 
layers a t  the reservoirs, may adequately represent the convective modification 
of a T*, S*(z) field originally in hydrostatic equilibrium. The stability analysis 
of $ 3  is undertaken for the equilibrium model, but it seems reasonable that with 
minor re-interpretation of the parameters the results should be applicable to the 
corresponding instability in the similarity model. There are many different 
modes of instability for the equilibrium state shown in figures l ( a ) , ( b ) .  The 
mechanism explored in $ 3  is rather novel in that it results in a systematic transfer 
of energy t,o a scale of motion which includes many salt fingers. It will be shown 
that this can occur at small Reynolds number (based on the undisturbed velocity 
of the salt fingers and L) when the Prandtl number is large. 

By making use of this instability mechanism in $5, we sketch a sequence of 
events in the ‘similarity’ model; starting from the state of diffusive equilibrium 
and ending with the ‘fully developed’ state of the thermohaline convective 
rhgime. The speculations lead to an order-of-magnitude estimate of the salt flux 
across a discontinuity layer (Turner 1967), and to an estimate of the dimensions 
of recently observed micro-structure in the ocean thermocline [see, for example, 
Cooper & Stommel (1968), Turner (1967), Cooper (1967)l. Additional indirect 
evidence for the suspected salt finger regime is given by the halocline formula 
of Stern (1968). 

FIGURE 1. The ‘equilibrium’ model. (a)  shows the vertical (2 )  variation of mean tempera- 
ture (2’) and salinity (B) in the undisturbed state. ( b )  shows a group of salt fingers in the 
undisturbed state. ( c )  is a schematic diag5am of the infinitesimal-amplitude perturbation o({, fi), where the wavelength of 8 in the <-direction is much larger than the width (nL) of 
the fingers in figure ( b ) .  (d )  shows the infinitesimal rotation (9) of a group of salt fingers by 
the shear of 0. -411 quantities are assumed t o  be independent of the direction normal to the 
(z, 2)-plane. 

2. Equilibrium model of salt fingers 
Consider an unbounded liquid in which the horizontally averaged temperature 

field p(z) increases linearly upward as shown in figure 1 (a). In  this model the 
horizontally averaged salinity field S(z) is independent of z, but there are hori- 
zontal variations of salinity So(%), temperature To(%), and vertical velocity 
w&). These describe the salt fingers illustrated in figure 1 (b ) .  A further simplifica- 
tion used in $52-4 is the assumption that K~ = 0. We shall now show that the 
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equations of motion are exactly satisfied by fields with the following horizontal 
variation : So@) = ASsin (z/L), 

To@) = A T  sin (x/L), 
wo(x) = - Aw sin (x/L). 

It is easily seen that mass and salt conservation are immediately satisfied by the 
assertion of a one-dimensional motion and by the assertion K~ = 0. Since there 
are no pressure gradients beyond that which is necessary to balance gaT(z), the 
vertical momentum equation will be satisfied if 0 = va2w0/ax2+ g(aT,-/3So), 
where PS, is the fractional increase in density due to a salinity increment So. In 
order to satisfy the heat equation we require that wo aT/az = K~ a2To/ax2. By 
substituting (2.1) into these two preceding equations and solving for the ampli- 

(2.1) 1 

tudes one obtains 

I g,8ASL2 Aw=- 
v ( l + A ) ’  

ga  aT/a~ ~4 

K T V  
A =  

The horizontally averaged flux of heat FH and salt Fs(cm/sec) obtainedfrom (2.1) 
and (2.2) are 

(2.3) 1 g(PAm2L2 
2 v ( l + A )  ’ Fs - /~S,W, = - 

F H = - a T w  x - - (l+nn)%. ~ 

We shall choose A = 1 in all numerical work to follow (for the reason mentioned 
in the second sentence of the introduction and also because it gives a heat- to salt- 
flux ratio which agrees with Turner’s (1967) measurements), and we also prefer 
to regard Fs (rather than AS) as the primary independent physical variable. 

3. Collective instability of salt fingers 
The equilibrium field of 3 2 may be unstable to different kinds of small perturba- 

tions, each of which is associated with different spatial scales and different overall 
effects on the salt fingers. The term ‘collective instability’ refers to the transfer 
of energy to relatively large-scale perturbations by means of the cumulative stress 
exerted by a group of salt fingers moving together. The velocity field o\(g, t) in 
figure 1 (c) illustrates such a large-scale perturbation. It consists of a shear wave 
whose fronts are parallel to the unit vector F, which is in turn rotated 0 radians 
from the x-axis. The 5 unit vector is perpendicular to 5 and there is to be no 
motion perpendicular to the plane of the figure. Let (tilde) [(-)I denote the 
average of a quantity over 6. In  the absence of salt fingers the average velocity 
( 0) would oscillate with the Vaisala frequency [ga a?/& sin2 014 of internal 
gravity waves, and we now intend to investigate the coupling with the salt 
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fingers present. Let V = go + V'denote the total velocity at a point (with 8, = O ) ,  
let T = T(z) + T' be the total temperature (with !?'(<, t )  9 0 ) ,  and let S be the 
total salinity. Note that part of T'(C, 5, t )  is associated with the undisturbed salt 
fingers and part with the 0 motion. When the Boussinesq equation for 
momentum is averaged along the g-axis, there results 

aU a 2 0  au --vv-qsin8(a~"-/3s") = --, 
at a p  ac 

- n  
where u = g .  V'V' . < is the Reynolds stress due to the salt fingers. When the heat 
equation is averaged in the direction one gets 

or 

and, when the non-diffusive salt equation is averaged, the corresponding relation is 
N 

aPs= a-Tx 

ss = psvr.<. 
at ' 

- n  

Using (3.3) and (3.2) to eliminate I"I' and s" in (3.1) there results 

(3.3) 

(;t a 2 )  ( a  
n ) a O  aT . a 0  

T a p  at a p  at az at 
-- K - --v- -+ga-sin28- 

4. The advective approximation 
The right-hind side of (3.4) contains two different types of stress, the Reynolds 

stress u and the buoyancy 'stresses' RH, sx. Before we can discuss the effect of 
these on the internal gravity waves it is necessary to discuss the modification of 
the salt fingers by the large-scale motion. Since salinity is conserved in our basic 
model the vertical isohalines of the undisturbed fingers will move with, and be 
rotatedby, the local motion of the large-scale wave as shown in figure l(c). To some 
extent this will occur for the (T,(x)) isotherms (if K~ is small compared with v, but 
large compared with K ~ ) .  We will assume that this is the case and this restricts the 
analysis of this section to large Pcandtl number. Consequently the viscous (and 
gravity) force in the undisturbed finger is large compared to the inertial force. 
Furthermore, a preliminary order-of-magnitude calculation leads one to expect 
(and verify at the end of the calculation) that the term associated with Q in (3.4) 
is small compared with the terms containing (RH, Ts). When this simplification 
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is made (3.4) becomes 

A more important assumption appears now when the fluxes (FH,Sx) are 
related to  0. First we note that aO/a< produces a rotation of the isohalines and 
therefore a variation of the (Px, FH) flux vectors. This kinematical effect gives 
rise to a net convergence of heat and salt in a lamina parallel to the wave fronts, 
thereby modulating the amplitude of the 0 oscillation. However, the rotation of 
the isolines may also alter the magnitude of the flux vectors because the perturba- 
tion of the buoyancy force relative to the density gradient in the finger modifies 
the local thickness and amplitude inside the finger. However this dynamical effect 
is strongly dependent on the structure of the salt finger in the undisturbed state, 
whereas the kinematical effect is not. For example, we will subsequently show 
that the kinematical effect does not depend on the ratio of the width of the salt 
finger to the wavelength of the internal wave. Furthermore, if one generalizes 
our two-dimensional model to the three-dimensional case the kinematical effect 
will again be unchanged, whereas the dynamical effect will undoubtedly depend on 
the planform structure of the undisturbed state. Because of this physical and 
parametrical difference it seems reasonable to investigate the influence of the 
kinematical effect separately, by neglecting the dynamical effect in the simplest 
model. Subsequently, one may search for a salt finger regime where this approxi- 
mation is formally valid and then treat the dynamical effect as a perturbation in 
certain structural parameters. With this preliminary rationalization we may 
restate the advective approximation as follows: Of([, t )  is regarded as a slightly 
modified internal gravity wave which translates and rotates the salt fingers in 
groups. The local salt and heat flux is assumed to be parallel to isohalines of each 
group and the magnitude of theJlux i s  the same as in the undisturbed state. 

The foregoing assumption allows us to write the salt flux as 
- A  

gs = psv’.< = -F,cOs(e+$), 

where the undisturbed Fs is given by (2.3). The quantity $(c, t )  is the infinitesimal 
angle between a local group of salt fingers and the vertical direction, as shown in 
figure 1 (d ) .  According to simple kinematical considerations of the rotation of an 
isohaline by a shear we obtain the relation 

a$/at = COS= (e + $) a U/ag M C O S ~  e a ??la[ 

8Fs/at = F8 sin # a$pt = Fx cos2 8 sin 0 a8la.g. 
Moreover, aFH/at = [A/( 1 + A)]  aFx/at, according to (2.3), and the introduction 
of these flux relations into (4.1) gives 

plus higher-order terms in %8/ac. Therefore 

which is a complete linear equation for 0(<, t ) .  
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Since (4.2) above has constant coefficients, we look for solutions of the form 
0 cc exp (at + imc), where 27r/rn is a real wavelength, and the complex growth 
rate SZ satisfies the cubic 

m2gFs sin2 8 C O S ~  8 
l + A  

= 0. (4.3) 

This cubic has no real positive root, but it has at least one negative (stable) root 
which we designate by Ql < 0. Since the sum of the roots is - vrn2, it follows that 
the remaining two roots are purely imaginary when SZl = - vm2. By substituting 
this latter relation for SZ in (4.3) we obtain the condition for marginal sta.bility: 
vu @/az sin2 8 = [Fs/( 1 + A)] sin2 8 cos2 8. The minimum critical condition for 
instability, corresponding to small 8, is given by 

With the aid of (2.1), (2.2) and (2.3) one may rewrite (4.4) in terms of a finger 
Reynolds number defined by R = AwLv-l. This alternative criterion for instability 
is R 2 ( ~ A K , / v ) ~ .  

From the foregoing idealized and simplified model we are led to the following 
generalization which has a certain degree of independent plausibility. One does 
not expect to find quasi-laminar salt fingers in water ( v / K ~  = 7) with a con- 
comitant Reynolds number which is much greater than unity. The Reynolds 
number concept is incorporated in the following discussion of an entirely different 
model. 

5. The fully developed similarity model 
Consider a ‘very deep’ layer of water which is arranged so that the temperature 

(T*(z)) and salinity fields (X*(z)) increase linearly upwards. This is initially in 
a state of hydrostatic and diffusive equilibrium with K~ =+ 0. A hypothetical 
sequence of events will now be sketched which transforms this unstable state to 
a new regime that is steady and homogeneous in a statistical sense. Dimensional 
reasoning will then be used to obtain interesting relations for the turbulent 
regime, including an estimate of the depth of water that is necessary to justify 
the assumption of homogeneity. 

The onset of the first salt finger instability (Stern 1960) in the starting state of 
diffusive equilibrium may produce a laminar field of vertical motion which 
increases exponentially with time until the critical Reynolds number for the 
collective instability is reached (54). The latter sets in as a growing quasi- 
horizontal oscillation which draws on some form of the available potential energy. 
The kinetic energy of the fingers and the larger-scale convective mode (identified 
as a wave in $4) cease to grow when the shear of the latter is sufficient to disrupt 
the fingers. 

In our model of the statistically steady state, quasi-laminar salt fingers will be 
retained in relatively thin (h, centimetres) and broad ‘discontinuity ’ layers. 
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Separating these are relatively deep ( H ,  centimetres) 'mixing ' layers containing 
convective eddies with relatively large motion and disorder. As the convective 
eddies sweep away the base of the discontinuity layer, groups of salt fingers are 
injected into them in such a way as to add to the circulation of the eddy. A similar 
account of the maintenance of each region is implicit in Turner's (1967) paper. 

Let AT" denote the average increase in temperature from the bottom to the 
top of a discontinuity layer and let AS" denote the corresponding salinity 
increase. Then the temperature gradient across this layer is of order AT"/h and 
the salt flux is of the order of the statistical mean ( F z ) .  By substituting the 
foregoing for the corresponding quantities appearing in (4.4) we obtain 

The symbol (k ) denotes equality in order of magnitude; a sharper definition 
(implied by subsequent arguments) is that the symbol ( z ) denotes the asymp- 
totic dependence (of a relation) on K~ when K ~ +  0. In these asymptotic relations 
t,he Prandtl number and the number 

are fixed at order unity values (in the central ocean N is about i). Notice that 
when the temperature (salinity) gradient is averaged over many steps in our 
similarity model the result is still aT*/az(aS*/az). This novel feature of the deep 
thermohaline regime requires that the vertical separation of thereservoirs must be 
large compared with a vertical scale depth (cf. (5.10) below). Let us first estimate 
the mean turbulent salt flux ( F z )  which accompanies a given aS*/az. Since the 
external parameters which govern the dynamics of the similarity model are 
gpaS*/az, v, K ~ ,  K ~ ,  gaaT*/az, it follows on formal dimensional grounds that the 
ratio of Fg to ( v 2 / K s )  8S*p/az can depend only on v / K T ,  v / K 8  and N .  Some simple 
physical considerations will now show that the aforementioned ratio is inde- 
pendent of the Schmidt number ( v / K s )  when the latter is very large. These and 
other considerations have been used by Stern (1968) to relate the gradient of the 
oceanic halocline to the evaporation boundary condition. The main assumptions 
in the halocline formula (5.4) should be more transparent in the relatively simple 
model of this paper. 

The so-called ' power-integral ' relating the r.m.s. (fluctuating) salinity 
gradient ( lVSl) to the 'average flux of salt down the mean-gradient' will be 
obtained first. If S + AS*(%) denotes total salinity then d(S + S*)/dt = K,V~(S+S*). 
Multiply by S and average the result over a large volume of fluid and over a long 
period of time. Assuming no net vertical flux of mass and assuming vertical 
symmetry (i.e. the flux of salt and salt variance is independent of z )  gives the 

as* thermodynamic equality 
KsIvs [2  = F z x .  

The dimensionless quantity p has been set equal to unity (its approximate value) 
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for convenience here and in what follows. We now take the r.m.s. value of the 
vorticity equation in the following manner: ( V  x V- uV2q\ = IgV,X-gaV,Tf, 
where q = V x V is the vorticity, 9 is the particle acceleration and V, is the 
horizontal component of the gradient. For small K~ it is apparent that the right- 
hand side of the above equation is dominated by IV2X( > IaV2T(, and apart from 
a geometrical factor we have IgV2X-gaV2TI M g IVSI. Next consider the left- 
hand side of the r.m.s. vorticity budget. Its order of magnitude (in K ~ )  is either 
determined by (V x 01 M 7 2  or by IuV2ql M uqLj;', where Lo is a dissipation scale 
length. Let us tentatively assume that both of the preceding terms are of the 
same order in K ~ ,  i.e. the dissipation scale length is associated with a unit Reynolds 
number. By equating the curl of the inertial acceleration to the curl of the 
buoyancy force we get q2 x g [VSl. On the other hand the mechanical energy 
equation tells us that the dissipation (uq2) is equal to the work done by buoyancy 
forces. The latter is g times the difference of the downward salt and heat flux 
(density units), i.e. gF:(l-y), where y is about when N = fr (Turner 1967). 
Thus the mechanical energy equation may be written as u r 2  M gF$, and this may 
be used to eliminate q2 from the vorticity balance. Doing this we get 

F$ lVSl x - 
V 

and when (5.3) is substituted in (5.2) we obtain the important formula 

(5.3) 

(5.4) 

Also note that lVXl x ( v / K ~ )  aS*/az is implied by the foregoing. In the central 
ocean the downward salt flux is determined by the evaporation rate and if this 
consideration is introduced into (5.4) one obtains the halocline formula (for 
aS*/az) derived previously by Stern (1968) in a more complex context. Next we 
consider the viscous term in the r.m.s. vorticity balance and solve for 

LD M (U/?jJ)$ M [VKs / (g  ax*/az)]t .  
This must now be reconciled with the width of the salt fingers. 

Turner (1967) has measured FZ as a function of AS" for a single layer which 
was 'artificially' produced in the laboratory and he obtained a $-power law. 
Although our model is quite different the same relationship is also required here 
on dimensional grounds. However, the analysis given below leads to a different 
dependence on Schmidt number than Turner suggested (but did not measure). 
We first write (5.3) as eAS"/L" w F;/u, where L" is the width of a salt finger in the 
discontinuity layer and €AS" < AS" is the salinity difference between adjacent 
salt fingers. By substituting AT"lh for the temperature gradient in (2.2) we obtain 
the corresponding value of L" as 

ga( A T "/h) 

Since AT"/h depends on F; according to (5.1) we may write the preceding in the 
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form L" M (s2)*. (5 .5)  

Now if the salt fingers extended across the discontinuity layer as laminar entities 
then the relation between ' salt flux ' and AS" could be obtained directly from a 
relation like (2.3)' viz. 'salt flux' , g(AS")2(LR)2 v-l. We do not, however, think 
that the preceding supposition is correct. We think that FJ will be somewhat less 
than 'salt flux' (given above). The salinity contrast €AS" between adjacent 
fingers should be less than AS" for the same reason. Since e is a function of the 
ratio of the two previously mentioned salt fluxes, it may be represented by the 
power law .,[ 
where p M 1 is an undetermined positive constant of order unity. The substitu- 
tion of (5 .5 )  into the relation e(AS"/Lc) M Fz/v  gives 

F J  w e*(ASr)1[I(T1 gv2 f . 
(5.7) 

Equations (5.7) and (5 .5)  are now employed to eliminate F,$ and L" from (5.6): 

Although the order-unity constant p > $ is not yet determined, we see from (5.8) 
and (5.7) that the salinity difference across the discontinuity layer is proportional 
to the 2 power of the salt flux. This relation between F,$ and A S  was found by 
Turner (1967) for layers produced in the laboratory, and applied by him t.0 com- 
pute the salt flux across layers observed in the ocean. It is therefore of great 
importance to make some theoretical estimate of the constant of proportionality 
in (5.7) and to compare it with laboratory measurements. The supposition that 
p is large compared to unity reduces (5.8) to E , ( K ~ / v ) Q ,  whereas ifp = 1 then 
B z K T / v .  Since p must be greater than 8 our 'hedge' estimate is p = 1 when the 
Prandtl number is in the vicinity of one. Using this (5.7) becomes 

FZ M r2)' (AS") f . (5-9) 

The value of (gKg/v2 ) )Q  is about 4 cmlsec. The corresponding number in Turner's 
measurements is about &cm/sec. On intuitive grounds one expects that, for 
fixed AS", F J  decreases with increasing Y and decreases as K~ + K ~ .  Therefore the 
error in using (5.9) should be no greater than a factor of ( v / K ~ ) ~ .  

The foregoing can also be used to estimate the thickness of the 'mixing layer ' 
for the oceanic case. The difference in salinity between two successive mixed 
layers is AS", and by equating this to H a s * / &  one obtains H M hS"(aS*/az)-l. 
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Simplification of the latter equation by the use of (5.9) and (5.4) gives 

(5.10) 

To obtain h we set aAT” z AS” in (5.1) and use (5.9) to eliminate AS”. The result 
may be written as 

Finally we get the salt finger thickness from (5.5) : 

(5.11) 

(5.12) 

Recalling our previous result for the dissipation scale (Lo z [v~~/(qaS*/az)]b-) we 
see that the smallest scale of motion is of order K~ whereas the largest vertical 
scale we have found is (5.10) of order ~ , i j a .  The value of H is 10i x lo3 em and 
his 104 cm for a value of aS*/az = cm-l, the latter number being the gradient 
of the halocline in the central ocean. The value of H compares favourably with 
Mediterranean outflow observations (Tait & Howe 1968) but recent measure- 
ments off Bermuda (Cooper & Stommel 1968) show smaller and more variable 
step structure. Variations in synoptic microstructure may be expected for a 
variety of theoretical reasons (Stern 1967). 

f 

6. Summary 
The highly idealized model of $5  2-4 has led to the notion that quasi-laminar 

salt fingers of unit Reynolds number exist in thin discontinuity layers separated 
by deeper mixing layers. The discussion of the fully developed thermohaline 
convection regime is an attempt to connect salt fingers observed in the laboratory 
to certain observed features of the main thermocline on the micro- and macro- 
scales. The order-of-magnitude calculations are not in conflict with the thesis that 
the sinking of salt (on the small scale) is the dominant mechanism for the vertical 
heat flux in the central ocean. Additional theoretical and experimental work 
appears to be possible and of potential value to the oceanographer trying to 
decipher the puzzle of microstructure in the thermocline. 

R E F E R E N C E S  

COOPER, J. & STOMMEL, H. 1968 J .  Geophys. Res. 73, 6849. 
COOPER, L. H. N. 1967 Sci. Prog. 55, 73. 
STERN, M. E. 1960 TeUu.9, 12, 172. 

STERN, M. E. 1968 Deep Sea Res. 15, 246. 
TAIT, R. F. & HOWE, M. E. 1968 Deep Sea Rea. 15, 275. 
TURNEn, 3. 8. 1967 Deep Sea Rea. 14, 699. 

STERN, M. E. 1967 Deep Sea Res. 14, 747. 


